Wireless smart sensor with small spiral antenna on Si-substrate
نویسندگان
چکیده
This paper presents a wireless smart sensor (WSS) with a thermoelectric sensor, a wireless transmitter and a small spiral antenna on a single package. To transmit a sensor signal, the wireless transmitter was designed to consist of an amplifier, a modulator, an oscillator, a buffer stage and an antenna. The wireless transmitter used dual pulse position modulation for low-power transmission. The fabricated transmitter has a sampling frequency of 2.6 kHz and an output carrier wave frequency of 300 MHz band due to the higher far field radiation of the transmitted signals from inside the body. The small size spiral antenna on the chip was fabricated for the transmission of carrier waves. The antenna has a bandwidth of 270–360 MHz for VSWRo2 and a gain of 40 dBi. The fabricated sensor, transmitter and spiral antenna were packaged with bond-wire on a single package. The WSS consumed a power of about 16.9 mW at the supply power of 5 V. The electric field strength of the WSS was measured to be 64.6 dB mV/m at a distance of 3 m. The wireless operation of the fabricated WSS was confirmed by demonstrating that the sensor signal was modulated by the transmitter and that the modulated sensor data was transmitted through the small size spiral antenna. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturi...
متن کاملA 10 mm3 Inductive Coupling Radio for Syringe-Implantable Smart Sensor Nodes
We present a near-field radio system for a millimeter-scale wireless smart sensor node that is implantable through a 14-gauge syringe needle. The proposed system integrates a radio system on chip and a magnetic antenna on a glass substrate within a total dimension of 1 × 1 × 10 mm3. We demonstrate energy-efficient active near-field wireless communication between the millimeter-scale sensor node...
متن کاملAn Efficient Technique for Substrate Coupling Parasitic Extraction with Application to RF/Microwave Spiral Inductors (RESEARCH NOTE)
This paper presents an efficient modeling method, based on the microstrip lines theory, for the coupling between a substrate backplane and a device contact. We derive simple closed-form formulas for rapid extraction of substrate parasitics. We use these formulas to model spiral inductors as important substrate-noise sources in mixed-signal systems. The proposed model is verified for the freque...
متن کاملPassive Wireless Smart-Skin Sensor using RFID-Based Folded Patch Antennas
This paper explores folded patch antennas for the development of low-cost and wireless smart-skin sensors that monitor the strain in metallic structures. When the patch antenna is under strain/deformation, its resonance frequency varies accordingly. The variation can be easily interrogated and recorded by a wireless reader. The patch antenna adopts a specially chosen substrate material with low...
متن کاملA Novel Small E–Ring Shaped Monopole Antenna with Dual Band-Notch Function for UWB Wireless Communications
This paper presents an E-ring shaped printed monopole antenna for UWB applications with dual notched bands performance. In order to generate single frequency band notch function, we applied a U-ring shaped monopole antenna, and by inserting a rectangular ring in the centre of it an E-ring shaped radiating patch created and a dual band-notch function can be achieved. The measured bandwidth of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microelectronics Journal
دوره 42 شماره
صفحات -
تاریخ انتشار 2011